

A Rebecca, arrivata giusto in tempo per la dedica del libro.

Perché, come una vigna nuova, ha bisogno di tante coccole, cure e attenzioni.





Chi impianta un vigneto ha una grande fiducia:

• in se stesso: spera che lui, i suoi famigliari o qualcun altro potranno raccogliere dei frutti.

• nel terreno, che ha scelto e ritenuto idoneo. Se ha scelto bene, i risultati gli daranno ragione.

• nel mercato. C'è sempre una crisi in vista, è vero, ma chi ne ha viste tante ha potuto constatare che queste non hanno influito sulla sua longevità.

> • nella vite. Per adesso non transgenica. Poi si vedrà.

• nel futuro. Se Noè non avesse avuto fiducia e non avesse piantato quella vite?

• nelle leggi.

Dà fastidio non poter impiantare sempre,
dovunque e comunque, ma poi si capisce che,
senza controlli, i danni ce li faremmo da soli.
Purché la legge sia uguale per tutti.

• nell'ecologia. Non è facile, ci vuole coraggio e bisogna rischiare un po' ma, con le conoscenze, si può coltivare senza avvelenarsi e avvelenare.

> nella bellezza della natura e del paesaggio.
>  È per questo che ci si sforza di costruire un vigneto funzionale, ma anche bello da vedere, che si sposi bene con il paesaggio.

> > Anche chi decide di scrivere un libro sull'impianto del vigneto deve avere tanta fiducia:

• nella benevolenza dei lettori. Perché si parte con tante idee, ma poi bisogna accontentarsi ed accettare i propri limiti.

• nella pazienza degli operatori del settore. "Chi sa fà e chi non sa insegna"... e per di più deve chiedere a chi fà, che ha poco tempo.

• nei collaboratori e famigliari, costretti a pazientare, qualche volta oltre misura.

Ma, alla fine, la fiducia è servita e, sia pure in ritardo sulle tabelle di marcia e con argomenti non trattati al livello desiderato, il volume è disponibile per viticoltori, tecnici, studenti ed appassionati. Saremo grati a chi vorrà fornire suggerimenti costruttivi. Per migliorare.

Da Vigna Nuova 2001





### Si ringraziano:

Ugo Allegri Elisa Angelini Gianni Argiolas

Az. Mastroberardino Massimo Brusco

Gianluca Caprasecca

Giovanni Capuano

Giorgio Casadei

Arnaldo Castagna

Rosanna Cirillo

Consorzio Tutela Aglianico

CRA VIT-Servizio Nazionale Certificazione Vite

Alessandro Crovara

Rocco Curatolo Di Majo Norante

Rosetta Dorigo

Giuliana Gay Sergio Lembo

Corrado Dottori

Salvo Foti

Alberto Franchi

Valerio Fronti

INRA, IFV, Montpellier SupAgro, CIRAD

Savio Landonio

Massimo Malfatto

Gianluigi Marenco

Alessandro Marson

Carolin Martino

Concezio Marulli

Giuseppe Rama

Simone Sali

Martino Salvetti

Luca Sartori

Consorzio Tutela Vini Montefalco

Nicola Scarano

Slawka Scarso

Salomone Spina

Tiziano Strano

Ernesto Taretto

Massimo Tricamo

Marco Vieri

Copyright 2016 by Edizioni VitEn Calosso - Asti (Italy) 1<sup>a</sup> Edizione: Maggio 2016 ISBN 978-88-86055-29-1

Coordinamento scientifico

Impaginazione e grafica

VitEn - Calosso (AT)

Copertina e disegni

**Patrizia Comino** 

**Davide Morando** 

Foehn - Torino (TO)

ditta citata in didascalia.

Prestampa

Stampa

nali VitEn

**(** 

Albino Morando, Simone Lavezzaro

L'Artistica Savigliano - Savigliano (CN)

Le foto di attrezzature che non hanno il

nome dell'autore sono state fornite dalla

Tutte le altre foto senza nome sono origi-

Proprietà letteraria riservata: Printed in Italy. Nessuna parte di questa pubblicazione può essere riprodotta, memorizzata o trasmessa in alcun modo o forma, sia essa elettronica, fotocopiata, ciclostilata, senza il permesso scritto dell'editore.

# Hanno partecipato alla realizzazione di questo libro:

### Lucio Brancadoro

Dipartimento Scienze Agrarie e Ambientali Università di Milano

Istituto Protezione Sostenibile delle Piante

CNR Grugliasco (TO)

#### **Daniela Bussi Albino Morando**

Vit.En. VitEn Calosso (AT) Calosso (AT)

# Claudio Corradi

Civa Correggio (RE) **Davide Morando** 

VitEn Calosso (AT)

Franco Mannini

#### Alba Cotroneo

Settore Fitosanitario Regione Piemonte

### **Maresa Novara**

Tecnico viticolo

# **Stefano Ferro**

VitEn Calosso (AT)

**Enrico Peterlunger** Dipartimento Scienze Agroalimentari

Università di Udine

**Martino Pedrini** 

# **Gabriele Gallesio**

Tecnico viticolo

Clemens

### **Cesare Intrieri**

Dipartimento Scienze Agrarie Università di Bologna

Simone Lavezzaro

**Chiara Roggia** Enocontrol

Alba (CN)

# **Anna Schneider**

Istituto Protezione Sostenibile delle Piante CNR - Grugliasco (TO)

#### Luca Lazzeri

Calosso (AT)

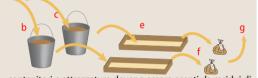
CREA CIN Bologna

VitEn

# **INDICE TEMATICO**

| PRESENTAZIONE                   |                                                        | pag 3              |                                                                    |                       | - Profili e asole                                                             | pag 122            | Lavezzaro S., Morando A., Corradi C.                 |
|---------------------------------|--------------------------------------------------------|--------------------|--------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------|--------------------|------------------------------------------------------|
| AUTORI                          |                                                        | pag 5              |                                                                    |                       | - Bibliografia                                                                | pag 124            | Euvezzaro s., Morando A., Condar C.                  |
| INDICE TEMATICO                 |                                                        | pag 6              |                                                                    |                       | 5.5.104.4.14                                                                  | pug 12 1           |                                                      |
|                                 |                                                        | , 3                |                                                                    |                       | - Verticalità del ceppo, canne                                                | pag 126            | Morando A., Lavezzaro S., Morando D.                 |
|                                 | - Origini - '800                                       | pag 10             | Bussi D., Morando A.                                               | CAPITOLO VIII         | - Legno e PVC                                                                 | pag 120<br>pag 128 | Morando A., Lavezzaro S., Morando D.                 |
|                                 | - Fine '800 - 1930                                     | pag 12             | Bussi D., Morando A.                                               | SOSTEGNI              | - Plastica, PRFV e metallo                                                    | pag 120<br>pag 130 | Morando A., Lavezzaro S., Morando D.                 |
| CAPITOLO I                      | - Anni 1930 - 1970                                     | pag 14             | Bussi D., Morando A.                                               | MINORI                | - Bibliografia                                                                | pag 132            | morando il, careccalo si, morando s.                 |
| STORIA                          | - Anni 1970 - 1995                                     | pag 16             | Bussi D., Morando A.                                               |                       |                                                                               | P 9                |                                                      |
|                                 | - Dal 1995 ad oggi                                     | pag 18             | Bussi D., Morando A.                                               |                       | - Fili di acciaio al carbonio                                                 | pag 134            | Morando A., Lavezzaro S., Ferro S.                   |
|                                 |                                                        |                    |                                                                    |                       | - Rivestimenti e tipologie particolari                                        | pag 134<br>pag 136 | Morando A., Lavezzaro S., Ferro S.                   |
|                                 | - I numeri della viticoltura                           | pag 22             | Lavezzaro S., Ferro S.                                             | CAPITOLO IX           | - Fili di acciaio inox                                                        | pag 138            | Morando A., Lavezzaro S., Ferro S.                   |
| CAPITOLO II                     | - Convenienza all'impianto                             | pag 24             | Lavezzaro S., Ferro S.                                             | FILI PER VIGNETO      | - Fili speciali                                                               | pag 140            | Morando A., Lavezzaro S., Ferro S.                   |
| VIGNETO: NUMERI E               | - Barbatelle e impianto                                | pag 26             | Lavezzaro S., Ferro S.                                             |                       | - Bibliografia                                                                | pag 142            | ,                                                    |
| AMBIENTE                        | - Esempi pratici di costi                              | pag 28             | Lavezzaro S., Ferro S.                                             |                       | •                                                                             |                    |                                                      |
|                                 | - L'ambiente di coltivazione                           | pag 30             | Lavezzaro S., Morando A.                                           |                       | - Accessori per pali                                                          | pag 144            | Morando A., Lavezzaro S.                             |
|                                 |                                                        |                    |                                                                    |                       | - Ancoraggio dei pali                                                         | pag 146            | Morando A., Lavezzaro S.                             |
|                                 | - Il terreno del vigneto                               | pag 36             | Morando A.                                                         | CARITOLOV             | - Accessori per fili                                                          | pag 148            | Morando A., Lavezzaro S.                             |
|                                 | - Tipi di terreno                                      | pag 38             | Lavezzaro S., Bussi D.                                             | CAPITOLO X            | - Tensione dei fili                                                           | pag 152            | Morando A., Lavezzaro S.                             |
|                                 | - Fasi preliminari                                     | pag 42             | Morando A., Ferro S.                                               | ACCESSORI E LEGACCI   | - Accessori speciali                                                          | pag 154            | Lavezzaro S., Morando A., Corradi C.                 |
|                                 | - Riposo                                               | pag 44             | Cotroneo A., Lazzeri L., Novara M.                                 |                       | - Legatura della vite ai sostegni                                             | pag 156            | Morando A., Lavezzaro S.                             |
| CAPITOLO III                    | - Sistemazioni                                         | pag 46             | Morando A., Lavezzaro S.                                           |                       | - Bibliografia                                                                | pag 160            |                                                      |
| TERRENO                         | - Sistemazione del terreno                             | pag 54             | Morando A., Lavezzaro S.                                           |                       |                                                                               |                    |                                                      |
| TERREITO                        | - Drenaggi                                             | pag 56             | Morando A., Lavezzaro S.                                           | CAPITOLO XI           | - Sollecitazioni sui sostegni                                                 | pag 162            | Morando A., Corradi C.                               |
|                                 | - Fognature<br>- Lavorazioni del terreno               | pag 58             | Morando A., Lavezzaro S.<br>Morando A., Lavezzaro S.               | RESISTENZA DEI        | - Prove di controllo sui sostegni                                             | pag 164            | Morando A., Corradi C.                               |
|                                 | - Concimazione di impianto                             | pag 60<br>pag 62   | Morando A., Lavezzaro S.<br>Morando A., Roggia C.                  |                       | - Resistenza agli aggressivi chimici                                          | pag 166            | Morando A., Corradi C.                               |
|                                 | - Bibliografia                                         | pag 66             | Morando A., noggia C.                                              | SOSTEGNI              | - Bibliografia                                                                | pag 168            |                                                      |
|                                 | Disnograna                                             | pagoo              |                                                                    |                       |                                                                               |                    |                                                      |
|                                 | Cealta dal nortinnecto                                 | 22260              | Lavezzaro S., Morando A.                                           |                       | - Forme di allevamento                                                        | pag 170            | Morando A., Lavezzaro S., Corradi C.                 |
|                                 | - Scelta del portinnesto<br>- Portinnesti              | pag 68<br>pag 70   | Lavezzaro S., Norando A.<br>Lavezzaro S., Schneider A., Mannini F. |                       | - Le misure del vigneto                                                       | pag 174            | Lavezzaro S., Morando A.                             |
|                                 | - Portinnesti di ultima generazione                    | pag 74             | Brancadoro L., Intrieri C.                                         |                       | - Scelta dei sesti                                                            | pag 176            | Lavezzaro S., Morando A.                             |
| CARITOLO II.                    | -Propagazione della vite-Scelta del vitigno            | pag 76             | Lavezzaro S., Morando A.                                           |                       | - Tracciamento                                                                | pag 178            | Lavezzaro S., Morando A.                             |
| CAPITOLO IV                     | - La selezione clonale in Italia                       | pag 78             | Mannini F.                                                         |                       | - Piantumazione delle barbatelle<br>- Messa a dimora manuale delle barbatelle | pag 180            | Lavezzaro S., Morando A.<br>Lavezzaro S., Morando A. |
| BARBATELLA                      | - Scelta dei cloni                                     | pag 80             | Mannini F., Ferro S.                                               | CAPITOLO XII          | - Messa a dimora meccanica delle barbatelle                                   | pag 182<br>pag 186 | Lavezzaro S., Morando A., Pedrini M.                 |
|                                 | - Vitigni resistenti alle malattie                     | pag 82             | Peterlunger E.                                                     | ALLESTIMENTO          | - Impianto dei pali                                                           | pag 188            | Lavezzaro S., Morando A., Corradi C.                 |
|                                 | - Il vivaismo                                          | pag 86             | Lavezzaro S., Morando A., Mannini F.                               | ALLESTIMENTO          | - Sistemazione dei fili e degli accessori                                     | pag 190<br>pag 190 | Lavezzaro S., Morando A., Corradi C.                 |
|                                 | - Bibliografia                                         | pag 96             |                                                                    |                       | - Impianti di irrigazione                                                     | pag 192            | Corradi C.                                           |
|                                 |                                                        |                    |                                                                    |                       | - Tipologie di impianti di irrigazione                                        | pag 194            | Corradi C.                                           |
|                                 | - Attitudine del legno come sostegno                   | pag 98             | Morando A., Lavezzaro S.                                           |                       | - Prime cure al vigneto                                                       | pag 196            | Corradi C., Morando A.                               |
| CAPITOLO V                      | - Essenze                                              | pag 100            | Morando A., Lavezzaro S.                                           |                       | - Potatura di allevamento                                                     | pag 202            | Morando A., Lavezzaro S.                             |
| PALI DI LEGNO                   | - Formazione e durata dei pali                         | pag 102            | Morando A., Lavezzaro S.                                           |                       | - Bibliografia                                                                | pag 204            |                                                      |
| TALIBILLONG                     | - Trattamenti protettivi                               | pag 104            | Morando A., Lavezzaro S.                                           |                       |                                                                               |                    |                                                      |
|                                 | - Bibliografia                                         | pag 106            |                                                                    | CAPITOLO XIII         | - Manutenzione ordinaria                                                      | pag 206            | Morando A., Lavezzaro S., Gallesio G.                |
|                                 |                                                        |                    |                                                                    | MANUTENZIONE DEL      | - Manutenzione straordinaria                                                  | pag 210            | Morando A., Lavezzaro S., Gallesio G.                |
| CADITOL C : "                   | - Pali stampati e stampati vibrati                     | pag 108            | Morando A., Lavezzaro S.                                           | VIGNETO               | - Bibliografia                                                                | pag 216            |                                                      |
| CAPITOLO VI<br>PALI DI CEMENTO  | - Pali stampati e vibrati, troncoconici e centrifugati | pag 110            | Morando A., Lavezzaro S.                                           | VIGIALIO              |                                                                               | , 3                |                                                      |
|                                 | - Pali precompressi                                    | pag 112            | Morando A., Lavezzaro S.                                           |                       |                                                                               |                    |                                                      |
|                                 | - Bibliografa                                          | pag 114            |                                                                    | VOLUMI DI RIFERIMENTO |                                                                               | pag 216            |                                                      |
|                                 |                                                        |                    |                                                                    | INDICE ANALITICO      |                                                                               | pag 217            |                                                      |
| CARITOLOUW                      | - Materiali                                            | pag 116            | Lavezzaro S., Morando A., Corradi C.                               | ELENCO DITTE          |                                                                               | pag 220            |                                                      |
|                                 | Producting                                             | naa 110            | Lavezzaro S., Morando A., Corradi C.                               |                       |                                                                               |                    |                                                      |
| CAPITOLO VII<br>PALI DI METALLO | - Profilatura<br>- Protezione e rifinitura             | pag 118<br>pag 120 | Lavezzaro S., Morando A., Corradi C.                               |                       |                                                                               |                    |                                                      |




6



a) asportare il cotico erboso (5 cm circa); b) scavare una fossa a 30 cm circa, prelevare il campione togliendo eventuali residui vegetali e mettere nel primo secchio (suolo); c) approfondire a 60 cm e prelevare un campione

(A) - Procedura per il campionamento:

- da mettere nell'altro secchio (sottosuolo);
- d) ripetere 5 volte l'operazione b e c in zone rappresentative l'appezzamento omogeneo;
- e) i due campioni (suolo e sottosuolo) vanno poi messi separati ad asciugare in un contenitore largo, frantumati con le mani il più possibile, togliendo residui vegetali e ciottoli;
- f) si preleva circa 1Kg di materiale per contenitore, da insacchettare ben etichettato;
- g) mandare al laboratorio di analisi specializzato.



N.B.: contenitori e attrezzature devono essere esenti da residui di concimi o fitofarmaci.

# (B) - Suddivisione dei terreni secondo la tessitura (sistema USDA-Tessitura argillosa Tessitura limosa Tessitura equilibrata Tessitura sabbiosa 80 70 50 40 30 20 10

60

| (C) - Parametri che inc                   | C) - Parametri che individuano il tipo di terreno                                                                                       |  |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Tessitura                                 | fa variare la disponibilità dei nutritivi, portanza del terreno e ritenzione idrica                                                     |  |  |
| рН                                        | influenza fortemente l'attività delle radici e la biochimia del terreno; valore ottimale: 7                                             |  |  |
| Sostanza<br>organica                      | fornisce nutritivi, regola la struttura, la C.S.C. e la ritenzione idrica                                                               |  |  |
| Capacità di Scambio<br>Cationico (C.S.C.) | condiziona la disponibilità all'assorbimento dei cationi (K, Ca, Mg, ecc.); valore ottimale: tra 10 e 20 meq/100g                       |  |  |
| Salinità                                  | se elevata turba l'equilibrio osmotico delle radici com-<br>promettendone l'attività; valore ottimale: 0,5-2 mS/cm<br>(microsiemens/cm) |  |  |
| Calcare                                   | interagisce con altri elementi (Fe, P) bloccandone<br>l'assorbimento; una dotazione superiore a 35 g/Kg è<br>considerata elevata        |  |  |

% sabbia

Lo scasso offre un'occasione unica nella vita del vigneto per interrare e distribuire uniformemente e a diverse profondità gli elementi nutritivi necessari alla vite. Ouesta concimazione straordinaria è importante soprattutto nei terreni di medio impasto e argillosi. nei quali la percolazione in profondità dei cationi minerali è più difficoltosa, perché gli elementi vengono trattenuti dal potere di scambio del terreno.

Per i terreni sciolti (CSC <10), la concimazione d'impianto deve invece costituire una fertilità di base che va comunque frequentemente ripristinata, a causa della difficoltà del terreno a trattenere gli elementi nutritivi.

Con la concimazione d'impianto si costituisce una riserva degli elementi meno mobili nel terreno, si migliora la struttura del suolo e si creano le condizioni ideali per l'attecchimento e lo sviluppo delle giovani piantine. Ciò è ottenibile apportando al suolo quanto manca per avvicinarsi alle condizioni ottimali, perciò è indispensabile innanzitutto conoscere il terreno.

#### Analisi del terreno

La sua valutazione deve essere in primo luogo visiva (osservare il colore, la presenza di scheletro, il grado di compattezza ecc.) e storica (comportamento della coltura precedente, eventuali manifestazioni di carenze, ecc.).

Tale "importantissima" analisi va elaborata sia per l'appezzamento nel suo insieme, sia per le eventuali zone "disomogenee" (ad esempio, dovute ad uno sbancamento o ad un riporto di terreno, nei punti di affioramento naturale dell'acqua, nelle zone di colore diverso, ecc.) allo scopo di intervenire in modo personalizzato per ogni situazione specifica.

Si sa, e non occorrono ulteriori indagini per dimostrarlo, che il letame va distribuito in quantitativi elevati nelle superfici sbancate, minimi o nulli dove si è riportato il terreno e intermedi tra le due situazioni.

Quando è noto che il terreno in questione è ricco e fertile ed il vigneto precedente produceva regolarmente, non è sempre indispensabile procedere ad analisi chimiche dettagliate.

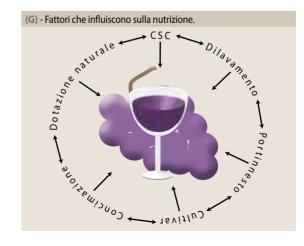
#### Analisi fisico - chimiche

Se, invece, è nota qualche carenza o in altri vigneti adiacenti si rilevano difficoltà vegetative e/o produttive e, in ogni caso, quando l'appezzamento presenta dimensioni ragguardevoli, è opportuno far eseguire una o più analisi complete, prelevando i campioni con la metodologia indicata (A).

Dai risultati dell'analisi, si ottengono informazioni

sulla granulometria delle particelle costituenti il terreno (B), sui principali parametri (C) e sul contenuto in macro e micro-elementi (D), ricavando indicazioni che guideranno il tecnico nel dosaggio degli apporti nutritivi (E).

Dal risultato delle analisi dipenderanno anche altre decisioni successive, in particolar modo la scelta del portinnesto, che può smorzare o accentuare, secondo l'attitudine, le caratteristiche pedologiche del vigneto (tab. a pag. 75).


# Dosaggio dei nutritivi

Nel dosaggio degli apporti nutritivi all'impianto (F) non esistono valori esatti, essendo la nutrizione della vite un processo biologico in cui interagiscono diversi fattori (G).

Solo l'esperienza e un'attenta analisi dei singoli elementi possono ottimizzare tali apporti, che andranno poi integrati con la concimazione di mantenimento, durante tutta la vita del vigneto. La fonte migliore di sostanza organica rimane il letame bovino o ovino (500-800 o più q/ha), difficilmente surrogabile con altri prodotti organici o misti organici.

L'azoto va apportato solo in caso di gravi carenze e, comunque, dopo lo scasso, in superficie o leggermente interrato, vista la sua naturale mobilità.

Il fosforo favorisce le difese della vite e la finezza del prodotto; nei terreni ad alta CSC è poco mobile nel suolo ed è quindi importante interrarlo con lo scasso; stesso discorso per il potassio, che ha una funzione rilevante nel processo di sintesi degli zuccheri nella pianta e nell'equilibrio acido del vino ottenuto. Altri micro-elementi possono causare sintomatologie diverse, se deficitari, e vanno guindi apportati in funzione dell'analisi del terreno.



| (D) - Dotazione del terreno in macro e micro-elementi. |          |             |           |           |         |
|--------------------------------------------------------|----------|-------------|-----------|-----------|---------|
|                                                        |          | molto bassa | bassa     | media     | elevata |
| .0                                                     | sciolta  | < 26        | 26 - 25   | 65 - 92   | > 92    |
| Potassio                                               | media    | < 42        | 42 - 83   | 83 - 125  | > 125   |
| 4                                                      | compatta | < 58        | 58 - 103  | 103 - 158 | > 158   |
| 0                                                      | sciolta  | < 10        | 10 - 13   | 14 - 18   | > 18    |
| Fosforo                                                | media    | < 8         | 8 - 11    | 12 - 15   | > 15    |
| ŭ.                                                     | compatta | < 5         | 5 - 9     | 10 - 11   | > 11    |
| ica                                                    | sciolta  | < 0,8       | 0,8 - 1,4 | 1,5 - 2,0 | > 2,0   |
| S. organica                                            | media    | < 1         | 1,0 - 1,8 | 1,9 - 2,5 | > 2,5   |
| 5.0                                                    | compatta | < 1,2       | 1,2 - 2,2 | 2,3 - 3,0 | > 3,0   |
| Azoto                                                  |          | < 0,5       | 0,5 - 1,0 | 1,5 - 2,0 | > 2,5   |
| Ferro                                                  |          |             | < 2,5     | 2,5 - 4,5 | > 4,5   |
| Manganese                                              |          |             | < 1,0     | 1,0 - 1,5 | > 1,5   |
| Zinco                                                  |          |             | < 0,5     | 0,5 - 1,0 | > 1,0   |
| Rame                                                   |          |             | < 0,2     | 0,2 - 1,0 | > 1,0   |
| Boro                                                   |          |             | < 0,2     | 0,2 - 0,5 | > 0,5   |

63

| elemento | concime                                                     | g/ha      | caratteristiche                   |
|----------|-------------------------------------------------------------|-----------|-----------------------------------|
|          | letame                                                      | 500 - 850 | sempre meno reperibile            |
| Sostanza | vinacce                                                     | 500 - 850 | molto acidificanti                |
| organica | pollina                                                     | 250 - 350 | caustica a contatto con le radici |
|          | compost                                                     | 400 - 500 | può cedere metalli (se pH<6)      |
|          | solfato potassico<br>(51% K <sub>2</sub> O)                 | 8 - 12    | dosi maggiori con C.S.C. alte     |
| Potassio | cloruro potassico<br>(61% K <sub>2</sub> O)                 | 6 - 10    | contiene cloro                    |
|          | perfosfato minerale<br>(21% P <sub>2</sub> O <sub>5</sub> ) | 10 - 16   | per terreni alcalini              |
| Fosforo  | scorie Thomas<br>(21% P <sub>2</sub> O <sub>5</sub> )       | 10 - 16   | per terreni acidi                 |
| Magnesio | solfato di magnesio                                         | 1,5 - 2   |                                   |
| Boro     | boracee                                                     | 0,2 - 0,5 |                                   |

(F) - La vite è dotata di un apparato radicale molto profondo. Per que sto è importante la concimazione d'impianto.



(A) - I microrganismi del suolo La funzione dei microrganismi è di molteplice natura: si esplica sia nei processi pedogenetici che nella nutrizione delle piante. Essi intervengono nella mineralizzazione della S.O., nella sintesi dell'azoto, nella formazione dell'humus e agiscono inoltre sulla mobilizzazione degli elementi minerali (B, C). Oltre a ciò occorre ricordare i rapporti che i microraanismi instaurano con le piante nella simbiosi micorrizzica. Rappresentano dunque una componente di fondamentale importanza per la fertilità dei terreni e svolgono un ruolo insostituibile, in mancanza del quale il terreno rappresenterebbe semplicemente un inerte supporto meccanico. Inoltre venaono utilizzati anche come indicatori della aualità del suolo perché svolgono delle funzioni chiave nella dearadazione e nel ricircolo della S.O. e dei nutrienti e rispondono prontamente ai cambiamenti dell'ambiente suolo. Per questo motivo l'attività microbica del suolo rispecchia la somma di tutti i fattori che regolano la degradazione e la trasformazione dei nutrienti. I microrganismi possono essere classificati in base alle fonti nutrizionali da essi utilizzati, si distinguono cioè gli eterotrofi, che costituiscono la maggioranza, dagli autotrofi. Questi ultimi, che rappresentano una minima parte, vengono suddivisi in chemioautotrofi, se utilizzano sostanze minerali (batteri nitrificanti), e fotolitotrofi se utilizzano la luce (batteri anaerobi fotosintetici rossi e verdi). La speciazione della carica microbica dei diversi terreni è comunque influenzata da fattori ambientali, nonché dalle caratteristiche fisico-chimiche del terreno stesso e dal suo grado di fertilità. Si è visto, inoltre, che la carica microbica diminuisce con la profondità del terreno, soprattutto per il decremento della S.O.. Esperienze di laboratorio hanno infatti confermato che l'apporto di S.O. al terreno provoca un incremento della popolazione microbica. Per definire la qualità microbiologica del suolo vengono presi come parametri la S.O., la respirazione del suolo, la biomassa microbica, il auoziente metabolico per la CO<sub>2</sub>, il auoziente di mineralizzazione dell'azoto.

| (B) - Ripartizione dei microrganismi del suolo |                                    |  |
|------------------------------------------------|------------------------------------|--|
|                                                | Peso della massa microbica (Kg/ha) |  |
| Batteri                                        | 450 - 7000                         |  |
| Funghi                                         | 600 - 1000                         |  |
| Attinomiceti                                   | 150 - 700                          |  |
| Protozoi                                       | 100 - 200                          |  |
| Alghe                                          | 25 - 100                           |  |

(C) - Trasformazione della S.O., apportata attraverso la concimazione, in elementi assimilabili dalla pianta. Si tenga presente che il terreno entra in relazione con le piante a cui fa da supporto, formando un ecosistema unico con esse e i microrganismi, aumentando la produttività delle stesse e rendendone possibile la coltivazione con un utile economico.



# Sostanza Organica

La quantità di sostanza organica (S.O.) nel suolo svolge un ruolo fondamentale nella vita della pianta. Di norma viene divisa in tre categorie: residui organici (prodotti di origine animale e vegetale non decomposti), humus labile (residui organici decomposti) e humus stabile (composti a elevato peso molecolare derivanti dall'humus labile condensato).

**Concimazione d'impianto** 

La S.O ha molteplici caratteristiche positive: effetto benefico sui micro e macroorganismi (A, B) presenti nel terreno, migliora la struttura del suolo aumentando la porosità, la capacità di ritenzione idrica e la resistenza all'erosione, è una riserva di elementi nutritivi, favorisce la proliferazione e la crescita delle radici.

La S.O. apportata deve però subire diversi processi prima di poter essere assimilata dalla pianta (C). Un terreno ricco di sostanza organica ma privo degli agenti responsabili della sua degradazione (funghi, batteri, atropodi) sarà un terreno comunque povero e non riuscirà a sfruttare appieno le potenzialità delle concimazioni apportate. In particolare si stima che la fase organica e vivente del terreno corrisponda al 3-4% del totale: questa fase comprende batteri, funghi, alghe, attinomiceti, protozoi, vermi e artropodi.

La fertilità viene definita come la capacità del terreno di rendere produttive le colture: si parla normalmente di **fertilità chimica** (tutti gli elementi nutritivi in forma assimilabile a disposizione delle colture), di fertilità fisica (struttura, tessitura del terreno etc.) e di fertilità biologica. Il concetto di fertilità biologica, però, è andato affermandosi solo in questi ultimi venti anni e con esso si vuole intendere l'espressione del metabolismo e del turnover microbico presente nel suolo.

# Qualità Biologica del suolo

Negli ultimi decenni, oltre alle tradizionali analisi chimico-fisiche e microbiologiche del terreno, si è assistito ad uno sviluppo del concetto di monitoraggio dello stato dell'ambiente. L'analisi del QBS (Qualità Biologica del Suolo) (D) si basa sulla valutazione della biodiversità di microinvertebrati come bioindicatori dello stato di naturalità del suolo. Viene eseguita un'analisi



quali-quantitativa delle comunità di microartropodi definiti "bioindicatori", in grado di fornire preziose informazioni sullo stato di salute dell'ambiente. Il grado di stabilità dell'ecosistema "suolo" viene determinato come indice di qualità in funzione della ricchezza in taxa (unità sistematiche) di organismi presenti e del loro adattamento alla vita edifica. Perciò più specie sono presenti nel terreno, maggiore è la sua stabilità. L'inquinamento indotto dalle attività antropiche (concimazioni, uso di fitofarmaci, rifiuti tossici) provoca la scomparsa delle specie più sensibili e la perdita di taxa in un sistema provoca cambiamenti nella struttura, negli scambi energetici e nei processi dell'ecosistema.

#### Correzioni

I terreni acidi coltivati a vite, pur riguardando zone viticole importanti, sono una minoranza nel nostro Paese. Il pH basso causa difficoltà di assorbimento di macroelementi quali il fosforo, mentre alcuni micronutritivi (Al, Mn, Cu) possono risultare così disponibili da diventare fitotossici (E). Conviene quindi procedere alla correzione dell'acidità somministrando comuni ammendanti quali calce o dolomite (F). Perché l'aggiunta abbia pronto effetto deve trattarsi di materiale macinato molto fine (impalpabile), eventualmente granulato per comodità di spargimento. Le dosi d'impiego variano in funzione del pH, del tipo di terreno e del materiale impiegato. Solitamente sono necessari 10-30 g/ha, da ripetersi dopo qualche anno.

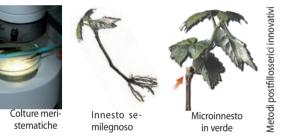
Per i terreni alcalini le correzioni sono decisamente meno fattibili ed anche meno risolutive e, per questo, impiegate raramente. Di solito si consigliano il solfato ferroso e lo zolfo: quest'ultimo, preferibile anche per altri benefici influssi sull'attività vegetativa e produttiva, va impiegato in dosi variabili da 10 a 30 g/ha, ripetendo il trattamento dopo qualche anno.

| (F) - Dosaggi dei correttivi più comuni utilizzati in vigneto |                            |                                                                       |  |
|---------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------|--|
| Terreno                                                       | Tipo di correttivo         | Dosi (q/ha)                                                           |  |
|                                                               | calce viva                 | 10-20 in terreni sabbiosi                                             |  |
| :                                                             | calce spenta               | 30-50 in terreni argillosi                                            |  |
| acido<br>(pH<6)                                               | corr. calcareo             | 20-30 in terreni limosi, 50-60 in<br>sciolti, 180-200 negli argillosi |  |
|                                                               | dolomite                   | 50-300 in funzione del pH                                             |  |
|                                                               | scorie Thomas              | 12-15                                                                 |  |
|                                                               | irrigazione con acque dure |                                                                       |  |
| alcalino                                                      | sommersione                | se causata da Fe                                                      |  |
| (pH>8)                                                        | gesso                      | 20-50                                                                 |  |
|                                                               | solfato ferroso            | 20-60                                                                 |  |
|                                                               | zolfo                      | 10-30                                                                 |  |
| salso                                                         | acque dolci                | quanto sufficiente                                                    |  |
| Saisu                                                         | gesso                      | 30-60 in terreni salso-sodici                                         |  |

| (E) - Funzione svolta dagli elementi minerali e problemi legati a carenze o eccessi di tali elementi nella pianta |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Elemento                                                                                                          | Funzione                                                                                                                                                                                          | Problemi legati a carenze/eccessi                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Azoto                                                                                                             | Formazione dei tessuti,<br>costituzione della clorofil-<br>la, acidi nucleici, sostanze<br>ormonali, vitamine e al-<br>caloidi                                                                    | Carenza: decolorazioni, riduzione svilup-<br>po della pianta, diminuzione differenzia-<br>zione gemme e allegagione, bassa produ-<br>zione, maturazione scalare, basso livello di<br>zuccheri, ac. tot. e APA<br>Eccesso: eccessivo sviluppo vegetativo<br>con maggior sensibilità a squilibri idrici e<br>termici e a Botrytis, sviluppo eccessivo dei<br>talci con mancata lignificazione, prolunga-<br>mento attività vegetativa con maturazio-<br>ne ritardata e incompleta |  |  |  |  |
| Fosforo                                                                                                           | Rientra nei processi di<br>metabolismo energetico<br>e costituzione delle mem-<br>brane cellulari, favorisce<br>accrescimento di apici e<br>germogli                                              | Carenza: arrossamenti e necrosi delle<br>foglie, riduzione sviluppo della pianta,<br>scarsa lignificazione, diminuzione diffe-<br>renziazione gemme e allegagione, bassa<br>produzione, minor sviluppo radicale<br>Eccesso: clorosi ferrica e aumento acidità                                                                                                                                                                                                                   |  |  |  |  |
| Potassio                                                                                                          | Trasporto della linfa, rego-<br>lazione degli stomi, sintesi<br>di amido e proteine, ligni-<br>ficazione, induzione di re-<br>sistenza a freddo, siccità e<br>malattie                            | Carenza: scolorazioni e necrosi dei margi-<br>ni fogliari, rallentamento della respirazio-<br>ne e della sintesi delle proteine<br>Eccesso: comparsa del disseccamento del<br>rachide dovuto a mancato assorbimento<br>di magnesio e calcio                                                                                                                                                                                                                                     |  |  |  |  |
| Magnesio                                                                                                          | Ruolo nella costituzione<br>della clorofilla, in diverse<br>reazioni enzimatiche e sin-<br>tesi delle proteine, stabiliz-<br>zazione della struttura di<br>acidi nucleici e membrane<br>cellulari | Carenza: clorosi degli spazi internervali,<br>scarso accumulo di zuccheri e dissecca-<br>mento del rachide                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Zolfo                                                                                                             | Formazione di tessuti e aromi                                                                                                                                                                     | Carenza: clorosi                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Calcio                                                                                                            | Distensione e divisione<br>cellulare, ruolo nelle rea-<br>zioni enzimatiche, raffor-<br>zamento di membrana e<br>parete cellulare                                                                 | Carenza: clorosi e necrosi delle foglie<br>giovani<br>Eccesso: legato alla comparsa di clorosi<br>ferrica                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Ferro                                                                                                             | Sintesi della clorofilla e<br>intervento nelle reazioni<br>redox di cloroplasti e mi-<br>tocondri                                                                                                 | Carenza: (soprattutto nei suoli calcarei) clorosi, necrosi e caduta foglie                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Boro                                                                                                              | Sintesi DNA e divisione<br>cellulare, favorisce la fe-<br>condazione                                                                                                                              | Carenza: morte degli apici vegetati-<br>vi, ispessimento e bollosità della foglia,<br>scarsa allegagione ed elevata colatura,<br>acinellatura con possibile imbrunimento<br>della polpa                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Manganese                                                                                                         | Partecipa alla fotosintesi,<br>sintesi di acidi grassi e nu-<br>cleotidi                                                                                                                          | Carenza: clorosi e bronzature                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Zinco                                                                                                             | Duplicazione del DNA, sintesi proteica, metabolismo glucidico, produzione di auxina                                                                                                               | Carenza: clorosi, foglie di ridotte dimensioni senza seno peziolare, acinellatura                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Rame                                                                                                              | Respirazione e metaboli-<br>smo proteico                                                                                                                                                          | Carenza: aree necrotiche nelle foglie giovani                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| olibdeno                                                                                                          | Importante nel metaboli-<br>smo dell'azoto                                                                                                                                                        | Carenza: clorosi                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

65




Propaggine





Innesto tavolo





(A) - Tutti i sistemi di moltiplicazione indicati sono ancora in uso. Alcuni, come la propaggine e la margotta, solo a livello occasionale, mentre l'innesto a tavolo e la seguente attività vivaistica atta a produrre barbatelle innestate, va a costituire quasi il 90% dei nuovi vigneti.

(B) - Innesto alla majorchina effettuato in Calabria. L'innesto è un'operazione delicata che richiede molta professionalità, difficile da trasmettere



La vite viene propagata per parti vegetative, allo scopo di mantenere le caratteristiche della pianta madre. La propagazione per seme fornisce piante selvatiche, molto diverse tra loro, solitamente con produzioni non commerciali. Questa tecnica viene quindi esclusivamente utilizzata per il miglioramento genetico sia dei portinnesti che nell'ambito della Vitis vinifera, per ottenere nuove varietà di uve da vino e da tavola. Prima dell'avvento della fillossera, le nuove piante venivano ottenute per talea e per propaggine, raramente per margotta. In seguito, si è ricorso all'innesto realizzabile in diverse varianti.

# Innesto in campo

Con l'avvento della fillossera, l'innesto, citato già da Columella per cambiare la varietà, ma utilizzato sulla vite solo occasionalmente, è diventato l'unico sistema per far sopravvivere i vigneti a questo flagello. Questa tecnica di biotecnologia è stata studiata a fondo negli anni a cavallo dei due secoli precedenti, con una infinità di varianti finalizzate ad ottenere i migliori attecchimenti e quindi poter costituire il nuovo vigneto nel minor tempo possibile. I principali innesti in campo sono stati e sono quelli a spacco semplice in testa, quello a spacco laterale e quello a gemma.

Innesto a spacco in testa. Da effettuarsi a fine inverno-inizio primavera era il piu usato nel centro nord Italia dove saltuariamente si utilizza ancora. Nel caso il portinnesto sia di grossa sezione si possono inserire due marze, sempre con l'accorgimento che ognuna vada a contatto con il cambio del soggetto (A).

Innesto a spacco laterale. Simile al precedente ma fatto lateralmente, quindi senza tagliare la parte superiore della vite e quindi, con la possibilità di rifare un secondo innesto in caso di fallanza del primo.

Innesto a gemma detto anche alla majorchina. Viene eseguito prevalentemente al Sud, dove l'anticipo della maturazione del legno consente di avere gemme già parzialmente lignificate. Con questo innesto si possono conseguire attecchimenti anche molto elevati, rendendo conveniente l'operazione (B).

Innesto CHIP-BUD e T BUD. Una tecnica particolare è quella degli innesti a gemma, effettuati nel periodo del germogliamento (CHIP-BUD) o a cavallo della fioritura (T-BUD). Quest'ultimo, noto come innesto a T, è più comune e diffuso (C).

Le gemme, prelevate in inverno, vengono conservate in frigorifero, a 4-6 °C con il 90% di umidità, fino al momento dell'impiego. Tutta la vegetazione del ceppo viene recisa, per cui i vigneti appaiono secchi, margotta, propaggine, innesti, innesto T-Bud

ad eccezione di una foglia che serve da tiraggio (10). La gemma viene inserita con un taglio a T effettuato nella parte mediana del ceppo, sotto il quale, con un seghetto, si effettua un'incisione per evitare che la linfa danneggi l'innesto. La gemma si sviluppa entro 10-20 giorni e produce un tralcio robusto, atto a fungere da capo a frutto nell'anno successivo, per fornire una produzione regolare. Si riduce guindi ad un anno il mancato reddito. Operando su viti relativamente giovani (possibilmente non oltre 10 anni) con marze ben conservate e con i dovuti accorgimenti, si possono raggiungere percentuali di attecchimento prossime al 100%. Fino a qualche anno fa, questi innesti venivano effettuati quasi esclusivamente da un'équipe francese, che operava con personale messicano in diversi Paesi del mondo. Oggi esistono imprese nazionali che possono effettuare gli innesti su tutto il territorio.

Innesto su portinnesto radicato In casi particolari, allo scopo di disporre immediatamente della varietà voluta, si può operare un innesto a spacco su barbatella franca. Dopo aver rinforzato il punto d'innesto con apposito nastro elastico, si paraffina per evitare la disidratazione e si mette immediatamente a dimora in vigneto. Con le dovute cure si possono ottenere attecchimenti superiori al 90%, con uno sviluppo vegetativo rilevante già al primo anno.

# Scelta del vitigno

Sarebbe bello, ad ogni vendemmia, poter disporre dell'uva meglio pagata; invece, a parte la pratica del sovrainnesto (A), le scelte d'impianto condizionano tutta la vita del vigneto. È quindi molto importante, poter disporre di una gamma di vitigni diversificata, tale da consentire ricavi soddisfacenti anche nelle congiunture meno favorevoli.

L'Italia dispone del patrimonio ampelografico più ampio al mondo fatto di oltre 2000 vitigni, dei guali attualmente 560 (506 varietà di uva da vino e 154 da tavola) iscritti al Registro Nazionale delle Varietà. Tale numero destinato ad aumentare, consente ai viticoltori italiani di proporre prodotti unici, che sfuggano alla concorrenza internazionale. Di certo le motivazioni economiche risultano preponderanti nella scelta varietale, ma è necessario valutare anche altri parametri, come l'adattabilità della cultivar al territorio, la sensibilità alle malattie, senza trascurare le limitazioni imposte dal legislatore, per le Denominazioni di Origine.

Una possibilità potrebbe consistere anche nell'affidarsi a recenti incroci varietali che possano incontrare il favore del mercato (D).





(C) - Il sovrainnesto o reinnesto della vite è una pratica molto antica ed ha lo scopo di cambiare la varietà in tempi brevi, senza estirpare e ripiantare il vigneto. Le tecniche possibili sono numerose e comprendono quasi tutti i tipi di innesto praticabili. L'esperienza ha portato a scegliere gli interventi più adatti, anche in funzione dell'età della pianta. Ad esempio, su viti giovani, si effettua normalmente l'innesto a spacco (sx) oppure a triangolo, mentre per quelle adulte si preferiscono gli innesti gemma detti anche T-bud (dx) (L'Arte della Vigna).



(C) - Il Merlese CAB1 è un vitigno ottenuto per incrocio controllato di Sangiovese X Merlot, selezionato dall'Università di Bologna ed iscritto al Registro Nazionale delle Varietà di Vite. E un vitigno mediamente vigoroso con tralci a portamento semi-assurgente. La buona fertilità delle gemme basali e la facilità di distacco degli acini lo rendono molto adatto alla meccanizzazione integrale della potatura e della vendemmia. La produttività del Merlese è leggermente inferiore a quella del Merlot e del Sangiovese. Il grappolo è piuttosto spargolo e presenta una ridotta suscettibilità alla botrite. La sua epoca di maturazione è subito dopo il Merlot e prima del Sangiovese. Alla vendemmia e a parità di concentrazione zuccherina, il contenuto acidico delle bacche di Merlese CAB1 è superiore a quello dei genitori e la concentrazione di antociani è molto elevata. Il vino Merlese CAB1 ha colore rosso intenso con riflessi violacei. Il suo profilo olfattivo è stato giudicato gradevolmente fiorale e fruttato (more, lamponi e ciliegie). Al gusto il vino è risultato secco e sapido, giustamente acido, leggermente tannico ma non amaro. Nel complesso il vino ottenuto dal Merlese CAB1 ha presentato un profilo aromatico interessante perché ampio di sfumature diverse e ben armonizzate fra loro. Al gusto, anche se non particolarmente corposo, il vino di Merlese CAB1 è risultato ben equilibrato e gradevole.

BD VN16 4 Barbatella.indd 76-77 25/04/16 11:05 **KEYWORDS** 

#### distanziatori, molle, gestione della chioma

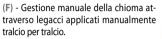
# **Evoluzione nel palizzamento**

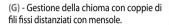
La concentrazione di richiesta di manodopera nella fase di allungamento dei germogli ha stimolato la ricerca di soluzioni sempre più funzionali, rapide ed economiche.

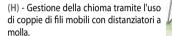
La legatura dei singoli germogli (F), indiscutibilmente ottimale, richiede tempi ormai proibitivi anche per le aziende più blasonate e redditizie.

Il doppio filo sorretto da traversine (**G**) è stata una bella idea di qualche decennio fa, ma ormai superata (anche se sono ancora molti i vigneti così predisposti.

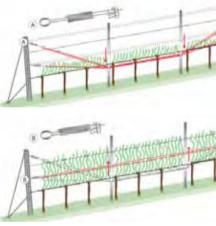
L'introduzione del distanziale a molla (H) rappresenta oggi la soluzione assolutamente dominante per i vantaggi elencati nella pagina a sinistra.


Per alcune zone viticole sta diventando interessante la soluzione dei fili mobili azionabili a mano o a macchina.





(M) - Metodo Grimaldi - Vigna d'Elite. È un metodo di coltivazione senza legature per vigneti che, grazie al particolare impianto con fili mobili, permette di "traslare" i fili in tensione lungo l'altezza del filare, facilitando in modo notevole la palizzatura dei germogli, la potatura secca e la stralciatura, con un notevole risparmio di ore di mano d'opera. Inoltre, con la tensione dei fili sempre costante, i germogli crescono verticali permettendo così una serie di vantaggi che vanno dal perfetto arieggiamento della spalliera alla corretta esposizione dei grappoli (Grimaldi).
















(L) - Il sistema ammortizzato può essere gestito in maniera manuale oppure attraverso una apposita macchina in grado di alzare le coppie di fili e agganciarle al palo all'altezza desiderata. Ovviamente l'intera struttura del vigneto dev'essere pensata per questo tipo di lavoro. Ad esempio i ganci dei pali devono essere particolarmente ampi ed aperti per favorire l'appoggio del filo. Requisito fondamentale è poi la tempestività di esecuzione dell'intervento onde evitare l'eccessiva rottura dei germogli (Vignetinox).



### Albino Morando, Simone Lavezzaro, Claudio Corradi



(A) - Avvitamento delle ancore tramite apposita attrezzatura a barella (Ferro A.).

**(B)** - A sin. disposizione dei contropali muniti di apposito poggiapalo (**Ferro A.**).

(C) - Sotto applicazione di specifici distanziatori a molla (Visconti).





(D) - In basso, svolgifilo doppio di grandi dimensioni per fili di acciaio zincato oppure inox (Vignetinox).

(E,F) - (nei tondi) A sin. svolgifilo su carriola a 2 posizioni e a destra svolgifilo agganciato a 3 punti, da 3 a 6 posizioni, con avvolgitore idraulico (**Dolmec**).

# Ancore e puntoni

Per le ancore costituite da una massa (pietra, mattoni, blocco di cemento) collegata al caposaldo con un filo è indispensabile scavare una buca (a mano o con la trivella), inserire l'ancora e poi rimettere il terreno, costipandolo il più possibile.

Le ancore ad elica si avvitano (a mano o con dispositivo meccanico collegato alla trattrice) (A), mentre le altre vanno conficcate a pressione. In tutti i casi è importante ottenere un ancoraggio stabile. collaudandolo a trazione prima di effettuare la legatura al palo di testata. È molto importante che le ancore vengano conficcate nel terreno alla maggior profondità possibile. Anche il posizionamento dei puntoni richiede molta cura, soprattutto se, come presumibile, viene ricercata una buona uniformità estetica. Il poggiapuntone è sempre indispensabile. Successivamente, si fissa il contropalo al caposaldo tramite le apposite staffe, cravatte o collari (B).

# Supporti per fili

Quando il filo viene legato o inchiodato al palo si procede prima alla stesura dello stesso e poi al suo fissaggio sul sostegno. Prevedendo invece dei supporti (mensole, distanziali), questi vanno applicati prima, in modo che il filo durante la stesura venga subito posto in opera.

I supporti possono venire applicati a pressione, legati con filo di ferro, infissi con chiodi, bulloni o pinzatrice meccanica o pneumatica.

Per un impianto efficiente e non dispendioso è importante che le operazioni si svolgano con velocità e precisione, ricorrendo preferibilmente ad attrezzi semplici e maneggevoli. La sistemazione dei fili risulta agevolata e meno costosa quando i pali sono di acciaio profilati a freddo e provviste delle apposite asole (C).

